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BIHARMONIC FUNCTIONSf 

A. V. K H O K H L O V  

Moscow 

( R ~ d  11 Janu~ 1994) 

The mixed problem of the two-dimensional theory of elasticity is reduced to a bihannonie boundary-value problem for the ~ reu  
function (this is only taken in the ease when the forces are specified on the whole lmundmy), to solve which a numerieal-n~lytie 
approach is proposed based on approximation by btqaanaonie functions. It enablns the geometrical dimemion of the boundmy- 
value problem to be reduced, thereby reducing it to minimization of the bolmdary residual. The approximate solution obtained 
satisfies identically all the equations of the theory of elasticity, and the specified boundary conditions are appro~im~.ted with 
high accmacy. 

Related methods of solving problems of mechanics were considered in [1-8]. 

1. T H E  G E N E R A L  S C H E M E  O F  T H E  M E T H O D  

The idea of using harmonic basis functions to solve the Dirichiet problem by a variational method 
[1] can be extended [7] to arbitrary boundary-value problems for systems of linear partial differential 
equations 

A f  = 0 in G, Bf  = g on  I" (1.1) 

where G is a region in R ~ with boundary F, f: G ---> R a is the required function (in general vector-valued), 
A is a linear differential operator in the linear space V(G) of functions from G into R% g: F --> RI~ is a 
given function which specifies the boundary values for f and combinations of its derivatives, V(F) is a 
certain space of boundary functions from F into R I~ and B is a linear differential operator from V(G) 
into V(F), which defines the nature of the boundary conditions. In this section when we refer to the 
"solution" of an equation or a boundary-value problem we shall have in mind either a regular solution 
or a generalized (weak) solution. 

The sequence of approximate solutions of boundary-value problem (1.1) is constructed in the form 

N 
fN(x) = E Ci{~i(X) (1.2) 

1 

where q • R, {~0i(x) I x • G, i = 1, 2 , . . .  } is a certain linearly independent system of functions, complete 
in the sense defined below, in the set K = K(A, G, B) of all solutions of the equation M = 0 in G lying 
in the domain of the operator B (K is a linear space over R, because A and B are linear). By virtue of 
the choice of the approximating basis functions q)i(X) and the linearity of the operator A Ally = 0 in G 
for Vcie R. Hence, the coefficients q are chosen so that the approximate solution (1.2) suits the given 
boundary conditions more accurately, i.e. c~ are determined through minimizing the functional of the 
form 

F[f] -= Fg[f] = IIBf- gll 2, f • K(A, G, B) (1.3) 

in the space K. Here I[" IIr denotes a real function on V(F) which vanishes only on the zero element of 
the space V(F) (these functions will be called "norms" for brevity, bearing in mind that all the norms 
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possess this property). It ensures that the set of minimal elements of the functional (1.3) in K coincides 
with the set of the solutions of boundary-value problem (1.1) with fixed function g (both coincide with 
the set {re  K I Fslfl  = 0 } ) . .  

By its definition the space/~ is identical with the set of all solutions of boundary-value problem (1.1) 
for different g e V(F). Hence, the class of functions g e V(F), for which boundary-value problem 
(1.1) is solvable, coincides with the subspaee B(K). Henceforth, we will assume that the solution f of 
boundary-value problem (1.1) exists and is unique, i.e. the functional (1.3) has a single minimal element 
in K. To find it we can use any of the existing methods for minimizing functionals. If, due to a proper 
choice of the "norm", the restriction F N ( C l , . . . ,  CN) of the functional F onto N-dimensional subspace 
of functions of the form (1.2) turns out to be a differentiable function, the necessary minimum conditions 
~FN/3Ck = 0 (k = 1 , . . . ,  N) give the system of algebraic equations for determining the coefficients c/. 
These equations are linear when the function F N is quadratic (for example, if the norm is generated 
by any scalar product in V(F)). 

The functional F (the measure of the deviation of the boundary values of the approximate solution 
from the specified boundary conditions) can be chosen differently using various "norms" in V(F). Both 
the form of the system of equations for c/(and of course, the approximate solution (1.2)), and the type 
of convergence of the boundary residual RfN -- BfN - g to zero as N ---> ** and the corresponding type 
of convergence of the approximations fN tO the exact solution f of problem (1.1), depend on the form 
of the functional F. The choice of the functional F determines the required form of completeness of 
the family of basis functions 9i in the space K, which ensures the construction of a minimizing sequence 
fN Of F, i.e. the convergence of F[fN] = I[Rf~lr to min f~xF{ f }  = F[f]  = 0 as N--->** and, finally, the 
convergence of fN to f for any g e B(K) in (1.1). The sequence { fN} of the functions (1.2) with coefficients 
% obtained through minimizing the functional (1.3) in the subspace of all linear combinations of the 
form (1.2), will obviously be a minimizing sequence for F for any g ~ B(K) if and only if the family of 
basis functions {q~i} is F-complete (with respect to the functional (1.3)) in the space K, i.e. for any 
g ~ B(K) and e > 0 the numbers k ~ N, al, • • •, % ~ R exist such that 

]11 ; OLiCpi - ~r~ otiBq) i _ g < e 
I 

Since A(fN- f) = 0 in G, we can draw a conclusion from the convergence of I~lf N - l~[r ---> 0 regarding 
the behaviour of the error fN- f inside G as N ---> o., using integral representations of the solutions of 
partial differential equations and the analogy of the maximum principle for harmonic functions: if the norm 
[I Ila in K, corresponding to the desired type of convergence of fN'--> ~ agrees with I1" I~ in B(K) so that 

0 ~< Ilfll o ~< MIIBfllr, Vfe  K (1.4) 

where M > 0 is  independent of f, then I I BfN- g ll r 0 as  N --> ** yields I I fN- o 0: I I fN-  tllo g ll B(fN 
- t)llr = MIlBfN - B tilt = glIBf  - ~lr. If the solution of problem (1.1) is unique for all 
g e B(K), the operator B: K --> B(K) is bijective. Inequality (1.4) indicates that the inverse operator WI: 
B(K) --> Kis continuous with respect to the chosen norms, i.e. boundary-value problem (1.1) is well posed. 

The main difference between this approach and the majority of numerical methods is the fact that 
initially it is ensured that approximation (1.2) belongs to the set of solutions of the differential equation 
of problem (1.1), common for all boundary-value problems which describe a certain physical pheno- 
menon, and only then the individuality of each specific problem is taken into account when satisfying 
the boundary conditions approximately. As a consequence of this it becomes possible: (i) to reduce the 
geometrical dimensions of the problem, (ii) to use a universal system of basis functions (for fixedA in 
(1.1)) to solve problems which differ in the boundary conditions, (iii) to obtain a smooth approximate 
solutions which satisfy the differential equations of the problem identically, (iv) to prove the convergence 
of the sequence of approximate solutions using estimates for the solutions of the differential equations 
inside the region in terms of the norm of their boundary values (similar to the maximum principle), 
fundamental solutions, integral representations of the solutions, and imbedding theorems, (v) to develop 
a closed semi-analytic highly accurate computational algorithm with a minimum amount of input data 
(only analytic expressions which specify the boundary conditions and the parametric representation of 
the boundary of the region and several controlling numerical parameter-modes are  to be entered); 
(vi) to estimate the error of the approximate solution inside the region via the deviation of its boundary 
values from the specified boundary conditions, simply and reliably monitor the authenticity of the 
numerical calculations; (vii) to calculate the required quantities not only at the nodes, but any point 
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of the region, use analytic differentiation to determine the additional physical quantities, related to the 
required quantities; (viii) to describe analytically in the approximate solution the singularities of the 
exact solution which arise at corner points of the boundary and caused by discontinuities of the boundary 
data, and the application of concentrated forces (sources). These features enable the class of test prob- 
lems used to analyse the errors of other numerical methods to be extended considerably. The sphere of 
application of the method at the initial stage of development includes boundary-value problems for linear 
partial differential equations with constant coefficients, when one can construct a family of solutions of 
the equations suitable for use as basis functions, for example, hyperbolic-trigonometric or polynomial 
[4, 5, 7]. In particular, it includes mixed boundary-value problems of the mechanics of piecewise- 
homogeneous auisotropie media. Problems for non-linear equations with variable coefficients can also 
be reduced to the solution of a sequence of such problems. 

2. THE R E D U C T I O N  OF A MIXED PROBLEM OF THE TWO- 
D I M E N S I O N A L  THEORY OF ELASTICITY TO A BOUNDARY-VALUE 

PROBLEM FOR THE BIHARMONIC EQUATION 

The determination of the stresses and displacements in a homogeneous isotropie linearly elastic body in 
a state of plane strain or in a plane stress reduces to solving a boundary-value problem for a system of 
equations of the two-dimensional theory of elasticity in a plane region G with piecewise-smooth boundary 
F, on the part F 1 of which distnqauted forces are specified, while on the remaining parts 1"2 the displacements 
are specified. The region G is assumed to be simply connected, and Fi and I"2 may consist of several 
components (the cases F1 = F or 1"2 = F are not excluded). If there are no mass forces in G, the use of 
the Airy stress function (p(x,y) (see (2.4)) leads to a boundary-value problem for the biharmonic equation 

A2~(x, y) = 0 in G (2.1) 

~ l r t  = X(s), t~nyl q = Y(s), ulr2 = U(s), x)lr2 = V(s) (2.2) 

where s is the variable length of the arc of the curve F with piecewise-continuous outward normal 
n(s); X(s), Y(s) and U(s), V(s) are the projections of the distributed forces, specified on F1, and 
the displacements of the boundary points, specified on F2, onto the axes of a Cartesian system of coor- 
dinates, and t ~  I r, 6ny [ r are the projections onto these axes of the internal stresses and boundary points 
of G 

J--  -Tbx l  (2.3) 

When finding a regular solution (continuous stress and displacement fields in the closed region G) 
we will assume that everywhere, apart from corner points of the boundary F, the functions X(s) and 
Y(s) are continuous on Ft, and U(s) and V(s) are continuously differentiable on 1"2. At corner points 
of the boundary special conditions for matching one-sided limit values of the functions X(s), Y(s), 
U(s), V(s) and their derivatives, which are necessary for a regular solution to exist [9], must be satisfied. 
If F1 = F, the specified boundary forces must satisfy three equations of equilibrium of the region G as 
a whole. The solution of problem (2.1), (2.2) will be sought in the factor-space K(G) of the space of all 
functions, of the class C4(G) c~ C 2 (¢~), which are biharmonie in G with respect to the subspace of linear 
functions (the zero stress field (2.4) corresponds to these). 

The stresses and displacements at any point of the dosed region t~ can be expressed in terms of 
9(x, y) by the formulae 

O2q), O'y(x, -'t32tP O2q) (2.4) 
a~(x,y)=-~-- Y)-~--~"' 'txY(x'Y)=- ~x~y 

I u(x,Y) I=1 D,* 
~(x, y) C°oX - Xo(Oo + ~o 

o ,H+II -oo,-,ooo-uo i (2.5) 

o.=.(v 0, / I (Xo,t) dt 
xo oy yo 
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ikp ~2q~ ~2q~ ~ ] 
-2~x(xo ,y )+y-~(xo ,Yo) -Yo~-~y(XO,Yo)+(v .+2)  (xo,Yo) (2.6) 

e: - v . _  I i 5-7O, yo)d, 
ay yo 

O2tP ~x~(Xo,Yo) + (v. + 2)~y~ (xo,Yo)) (2.7) -2"-~(x'yo)+ X ~---'~ (xO'yO)-xO y 

where, in the case of plane stress, E. = E and v. = v are the modulus of elasticity and Poisson's ratio 
of the elastic medium, while in the case of plane strain E. = E(1 - v2) -1, is an arbitrarily fixed point 
of the region G, to(x, y) = 1/2(Ou/~x - Ou/Oy) is the angle of rigid rotation at the point (x, y), u0 = U(Xo, 
Y0), x~0 = u(x0, Y0), COo = tO(Xo, Y0) are constants, which define the displacement of the region G as an 
absolutely rigid body, and 

D_- I Du 

is a linear integro-differential operator [7] which maps every biharmonic function q~(x, y) ~ K(G) into 
the uniquely defined elastic component Dq~ of the displacement field (i.e. the vector field in G satisfying 
the homogeneous two-dimensional Lam6 equations) with zero displacements and zero angle of rigid 
rotation at the point (x0,Y0). 

Formulae (2.5)-(2.7) (derived in [7]) express the displacement field in the simply connected region 
G in terms of the stress function in explicit form, suitable as a detailed instruction for a computer, and 
enable the mixed problem of the two-dimensional theory of elasticity to be reduced to a biharmonic 
boundary-value problem for the stress function. They can be regarded as one more form of the general 
solution of the homogeneous Lam6 equations in a simply connected region. 

After the stress function q~ has been obtained by solving _boundary-value problem (2.1), (2.2), the 
stresses and displacements at any point of the closed region G can be determined, using (2.4)--(2.7). 

By changing to the boundary-value problem for the biharmonic equation (which is usual only in case 
when F1 = F, if it is not required to obtain the displacements), one can use the same basis system {93 
to solve problems of the theory of elasticity and of bending of plates. 

3. A P P R O X I M A T E  S O L U T I O N  

An approximate solution of problem (2.1), (2.2) is constructed in the form 

N 

~(x,y) = q~N (x,y) = Y~ cigi(x,y) (3.1) 
-2 

where 9(x, y) (i = 1, 2 , . . . )  is a certain system of linearly independent functions, biharmonic in G, from 
the space K(G). For any N and ci the function (3.1) satisfies Eq. (2.1) in G. The coefficients ci, which give 
the best approximation of the boundary conditions (2.2), are found from the condition for the functional 

I 

F[qq = ~ S (((anxlr~ -X(s)) (t))2 + ((Onylr n _YCs))Ct))2)wt(s)ds + 
l=0  r l  

1 
+Y :Z ~ (((Ulr 2 -U(s)) (t))2 + ((Vlr2 _V(s))(t))2)wt(s)ds (3.2) 

I=0  r 2 

to be a minimum on K. Hereg(0(s) = dtg/ds t, the scaling factor ? = E2/I F I 2 serves to equalize the physical 
dimensions and magnitude of the summands, and the weighting functions We(S) > O, wl(s) ~ O, pie~wise- 
continuous on F, serve to adjust the functional in accordance with the desired properties of the sequence 
of approximate solutions (for example, Wl(S) may be a piecewise-constant function, which takes the great- 
est value on those parts of the boundary where a more accurate approximation is desirable, and is equal 
to zero where the corresponding discrepancy is not required to be small). The problem of minimizing 
the functional (3.2) on K (or K(G) N C'(G) when Wl(S) * O) is equivalent (see Section 1) to boundary- 
value problem (2.1), (2.2). Assuming the existence and uniqueness of a regular solution of problem (2.1), 
(2.2), functional (3.2) has a unique minimum in K--the exact solution of problem (2.1), (2.2). 
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The displacement field (2.5), that corresponds to the stress function (3.1), is of  the form 

[I u(x,y) ui(x,y) I 
~ ( x , y ) l l = ~  cill "oi(x,y ) 

(3.3) 

II :-: I1:11°11 , ,  II z-_', I1=11'1 ,o II :: I1=11-yll. I:; II--II o:, ,_>, 
The corresponding boundary stresses can be calculated from (2.3) 

a2(pi I N a2tpi N 
°"xlr = 2~ ci~-"~-------------~S'" r 'o~oy t~,ylr = - E  c i ~  

-2 -2 asax  r 
(3.5) 

where tp_ 2 - 9-1 - tp-0 - 0. Substituting (3.3) and (3.5) into (3.2) we can convert the functional F into 
a quadratic function F(c_2,. • . ,  c~) on R N+3. The necessary conditions for it to have an extremum 
aF/~c k = 0 lead to a system of N + 3 linear equations for determining the coefficients ci, which give 
the best approximation of the boundary conditions (2.2) 

N 
~, PtiCi = qt, k = -2,-1 ..... N (3.6) 

i=-2 

l ( - ,2  - I (1) - 2  I ( / )  - 2  [(/ 2 (t) '~ 

p,,,=~ s i<'+,l °<P' +<'~'1 ~ l  lw, cs)d,+ 
,=o ,-, I,. ~-b-7~-yl,-, 5;~Yl,-, ~-7b-;x ,. <"<'-'<l,-, ) 

I 
+~[ ~ I tu I(/)u I(1)+' I(/)s I(I))Wl (s)ds (3.7) ', kr2 ir2 vk'F2 viF2 

1=0 r 2 

= 1 ( I _y(l)(s)O~k [ ' , 2  I (I)'~lwl(s)ds + qk E I x(t)(s) 02%'") 
t=o ,-, I,. ~ y  I,-, o,ox I,-, ; 

+~ ~ S (v<"(s)£~' +v,',(s)~,f~,)w,(s)e, (3.8) 
l=0 r 2 

The matrix [IP~ I[ is symmetrical and positive definite (like a matrix of positive quadratic form). Hence, 
for any N, system (3.6) has a unique solution, and the non-negative quadratic function F(c_2 . . . .  , cN) 
is a minimum for this solution. When ['1 = [', (3.6) becomes a system of N equations for ci, i > 0 
(p~ = 0, q~ = 0 when k ~< 0 or i ~< 0), while to obtain the coefficients ci, i < 0, which define the rigid 
displacement of  the region G, it is necessary to specify a statistically determinable system of supports 
for G (for example, consisting of  three supports which do not allow displacement of three fixed points 
along their axes [7]). The values of  c /obtained for each N from the system (3.6) define the sequence 
of approximate solutions q~ (3.1). 

Each of  the above-mentioned properties of the family of basis functions tpi plays an important role: 
the condition 9i ~ K(G) ensures that the approximate solution (3.1) belongs to the space K(G), in 
particular, that it is biharmonic in G; the linear independence of {(I)i} guarantees the existence and 
uniqueness of the solution of system (3.6) for any N; the F-completeness of {(l)i} ensures the construction 
of  a minimizing sequence of the functional (3.2), i.e. the convergence of the boundary residual to zero 
and the convergence of  the sequence of approximations (3.1) to the exact solution of problem (2.1), 
(2.2) as N ~ oo. 

If  G is a simply connected region, any basis in the linear space of all biharmonic polynomials 
satisfies all these requirements on the family 9i. Its F-completeness is a consequence of the following 
assertion: any function ~(x, y) ~ C'n+2(G), m t> 1, that is biharmonic in a bounded simply connected 
plane region G, is the limit of a sequence_ of biharmonic polynomials which converges in the norm 
C" (G)  (i.e. which converges uniformly in G together with the sequences of  derivatives up to order m). 

Proof By Goursat's theorem any functions f(z), g(z), z = x + by, holomorphic in the region G, generates a hi- 
harmonic function ep(x,y), Re(~-f(z) + g(z)), and ff G is simply connected, every function that is biharmonic in G 
can be represented in this form [11]. Heref(z) = x/d ¢P(z)dz, where ~(z) is such a holomorphic function in G, that 

+2 Re ~ = Aq), while Reg = Atp - x R e f - y I m f  Thus, it follows from ¢p ~ ~ ((~) that Re ~ = Atp ~ Cm(t~). Hence 
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Im O e C~((~) by the Cauchy-Riemann equations • ¢ C-~(G), and thereforef e C~+I(G), Reg e Cm(G), and 
by virtue of the Cauchy-Riemann equations Img ¢ C~(G), i.e. g ¢ Cm(G). 

By Mergelyan's theorem [12] (any function of the complex variable z, continuous in the compactum E C C and 
holomorphic in its interior, is the limit of a sequence of polynomials of z, which converges uniformly in E, if and 
onl.y if the supplement C~E is connected), sequences of polynomials of z exist which converge uniformly to 
fim)(z) and g(m)'(z) in the compactum G. By integrating them m times we obtain sequences of polynomialsf,,(z) and 
gn(z) such that {f~(0(z)} and {gn(0(z)} converge uniformly in G tof(t)(z) and g(0(z) provided I <~ m (consequently, 
Re f," ~ Re f, Imf," ~ I m f  in the norm of C'n(G)). Then, the sequence of biharmonic (by Goursat's theorem) 
polynomialsp," (x, y) = Re (£f,'(z) + g,'(z) ) = x Re, f,, + y Imfn + Re g," converges to q)(x, y) in the norm of C'n(G): 
for a, 13 >~ 0 such that o~ + [5 ~< m, the sequences 

~a+l~ 3a+13 
~ ( P n  - ~) = ~x--'~y~ Re([(fn - f )  + gn - g) = 

= ~ ( x R e ( A  - f )  +ylm(A - f )  +Re(gn - g)) 

converge uniformly in ¢~ to zero, since {Re (f," -f)},  {Im (f," -f)},  {Re (g," -g)} converges to zero in C'n(G) while 
Ixl, lyl ~< c (G is bounded). 

This assertion can be extended to multiply connected regions if we replace the polynomials by rational 
biharmonic functions having no poles in G. Similar theorems on the uniform approximation of any solu- 
tion by polynomial or rational solutions also hold for Laplace's equation [8] and the one-dimensional 
wave equation. 

Since the homogeneous components of any biharmonic polynomial are biharmonic, and the dimension 
of the spaces Pm of homogeneous biharmonic polynomials of degree m 1> 3 is equal to 4, the basis of  
the space of  all biharmonic polynomials can be obtained by combining into one chain the bases 
{p,,,j,j = 1, 2, 3, 4} of the subspaces Pro, constructed in [7] 

q)-2 =1, (P-i =x ,  (P0 =y ,  (Pl =x2,  q)2 =2xy, (P3 =y2,  q)i =p,,,j(x,y), i > 3  (3.9) 

[m/2] , xm-21 y2l [m/2] l xm-21 y2l 
Pml = • ( -1 ) ' ( 1 - / )  Pro3 = -  Z (-1) l - -  

t=0 (m-21)!  (2l)! '  t=0 ( m - 2 0 !  (20! 

L xm-2/-I y21+l L gin-21-1 y2/+l 
Pm2 = ~ ( -1 ) / (1 - / )  , Pm4=-~" (-1)// 

1=0 ( m -  2 l -  1)! (2l+ 1)! /=0 ( m - 2 l - 1 ) !  (2 l+ 1)! 

m = I 4 ] + 2 ,  J = i - 4 1 4 ] + 1 ,  L = [ - ~ ' !  1. 

With this choice of q)i the stress function (3.1) turns out to be a biharmonic polynomial of order 
[N/4] + 2, and analysis of  the structure of the operators Du, D~ defined by (2.6) and (2.7) for x0 = 
Y0 = 0 shows that the vector field D(Pi in (3.3) and (3.4) is a homogeneous polynomial solution of  the 
Lam6 equations, and the linear independence of the set {D(Pi} follows from the linear independence 
of  {(pi}. Hence, the basis system of biharmonic polynomials ~0i generates a complete system (3.4) of 
linearly independent polynomial solutions of the two-dimensional Lam6 equations. After substituting 
(3.9) into (3.4) and evaluating the derivatives and integrals in (2.6) and (2.7) (for x0 = Y0 = 0), expressions 
were obtained in [7] for the coefficients of the polynomials ui and vi in terms of the known coefficients 
of polynomials (3.9). 

4. N U M E R I C A L  I M P L E M E N T A T I O N  OF T H E  M E T H O D  

The polynomial basis functions cpi possess at least two attractive features: (1) they are not linked to any specific 
region G and ensures the convergence of the approximate solutions to the exact ones for any simply connected 
region; (2) they are convenient to use in calculations. For example, ff the parametric equations F, wt(s) and g(s) 
are piecewise-polynomial functions (by virtue of the approximative properties of these functions this class of 
problems covers all the ones arising in engineering), all the integrals in (3.7), (3.8) can be evaluated analytically 
(using packets of symbol calculations), and algebraic formulae are obtained for Pta and qk. In this case we can 
eliminate the use of numerical-integration procedures---the main source of computational errors and processor 
costs---and considerably increase the accuracy and efficiency of the algorithm. 

In general, the matrix of system (3.6) is not a sparse matrix, as in all variational methods based on global 
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approximation. However, an analysis of 0.7) and (3.8) reveals considerable simplifications in the structure of system 
(3.6) provided the region G, the basis functions 9," and the boundary conditions possess symmetry properties. The 
sufficient conditions for the cocfficientspla and q, to vanish were obtained in [7]. In particular, it was established 
that ff the parts F1 and Fz of the boundary G arc symmetrical about both coordinate axes, three-quarters of the 
total number of elementspu will be zero and arranged so that system (3.6) splits up into four independent subsystems. 
Then, depending on the type of symmetry of the boundary conditions (2.2), one, two or three of these will certainly 
have a zero solution. 

The use of polynomial basis functions and orientation towards the analytic (symbolic) inputting and processing 
of data enabled the author to develop [7] a general computational algorithm and software package for a highly 
accurate computation of stresses and displacements in a rectangular elastic region which are caused by displacements 
specified on a part of its boundary and pieccwise-continuous distributed forces, and concentrated forces applied 
to the remaining part. The load, including concentrated forces and distributed forces with discontinuities of the 
first kind, is reduced to continuous boundary conditions of the form (2.2) by preliminary automatic separation of 
the analytically constructed stress and displacement fields with a special type of singularities at specified boundary 
points (they are not an additional source of error since they satisfy all the equations of the theory of elasticity) 
[7, 10]. This preliminary regularization of the boundary conditions improves the computational properties of system 
(3.6) and enables N to be reduced. 

An important feature of this approach and the program which implements it is the possibility of simple monitoring 
of the reliability and degree of accuracy of the numerical results obtained: since the approximate solution satisfies 
all the equations of the theory of elasticity identically, it is sufficient to check that the deviations of the computed 
boundary values of the stresses and displacements from the given ones are small, and do not exceed the errors in 
specifying the boundary conditions (in fact, the exact solution of the problem is obtained with only small changes 
in the boundary conditions). 

The program developed was used, during the six years of its existence, to solve several dozens of problems of 
the theory of elasticity with a variety of boundary conditions [7, 10], in particular, those shown in Figs 1 and 2. A 
detailed analysis of the approximate solutions of various problems obtained for different N showed that for N = 
160 (using polynomials (3.9) up to order 40) the relative error of the stresses and displacements calculated at :?agg-4~ 
boundary points did not exceed 10-4-10 -7, and even for N ~ 60 an accuracy of 1% was achieved in the majority of 
cases, i.e. the solutions obtained are practically indistinguishable from the exact ones. Because of the rapid 
convergence (small values of N in practical calculations), the negative effect of the filling of the matrix of system 
(3.6) and the degradation of its conditionality as N increases is unable to develop in practice (the common knowledge 
concerning the "almost linear dependence" of systems of polynomial basis functions is not confirmed for biharmonic 
polynomials (3.9)). 

(Bi)harmonic polynomials are suitable for solving problems in hydromechanics, electrostatics, the St Venant theory 
for torsion and bending of prismatic bodies, the bending of membranes and plates, and the three-dimensional theory 
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5. E X A M P L E S  

In the problem shown in Fig. 1, the sidesx = +3 are rigidly clamped. Graphs of the stresses in the sectionsx = 
const andy = const are shown in Figs 3-5 (in view of the symmetry ax(-x,y) = ax(x,y), %y(-x,y) = --x~,(x, y) and 
hence only half the graphs are shown in Figs 3 and 4 for x ~ 0). It is useful to compare them with the stresses 
calculated from the formulae for the resistance of materials, denoted by the dashed curves. The concentration of 
the stresses in the region of the clamped sides and in the neighbourhood of the point where the concentrated forces 
are applied is of interest. 

In the problem shown in Fig. 2, the shear boundary forces are distributed uniformly over six segments of 
length 0 2 The shear stresses produced by these are shown in Figs 6 and 7 •(x, -y) = --z (x, y)) At points of 
discontinuity of the boundary forces the stress field %y(X,y) has a discontinuity of the first kind, while t~x(x,y) has 
the logarithmic singularity. The maxima of the %y0') curve in Fig. 6, as in Fig. 5, are situated in the region of the 
outer fibres and not on the neutral axis. 
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